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Let X - :x, ,... , XNJ be a finite subset of the real line, Xl x.\. Let
1> be a continuous function on the real line and {</;l ,... , </;,,) a Chebyshev set on X,
n N. Define L(A, x) 2:;'_1 a,.</;,,(x), F(A, X) 1>(aox)L(A, X). Let
be a given norm on the functions on X. Let G be a family of functions containing
~F(A, .)). The approximation problem is: Given a funetion .f on X, find K* c G
for which II f g II attains its infimum p(f) over KeG. Such an element K* is
called a best approximation. In this note we consider the existence of best ap
proximations.

It is well known that a necessary and suflicient condition that every
function on X have a best approximation from G is that G is closed. We,
therefore, seek to find the family F, the closure of {F(A, ')}. This F has the
property that a best approximation from it always exists and it is the smallest
family G containing {F(A, -)} with this property. Characterizing F involves
two steps. We must show thatF contains all limits of sequences from {F(A, .):.
We must also show that each element of F is a limit of a sequence from
{F(A, '))' Since we may not know F ahead of time, we will first consider limits
of bounded sequences from {F(A, .)} and later see if every element of a family
containing them is a limit of a bounded sequence.

Such an analysis has already been carried out for the case ~(x) exp(x)
by the author [I].

It will be useful to have a norm on the coefficient vector of L. or
equivalently. a seminorm on the parameter vector. Define

Ai
I max{1 (Ii : I 11} •

As the first part of our analysis, we consider the behavior of bounded se
quences from {F(A • .)}. Without loss of generality we will use the Chebyshev
norm and consider

I F(AI/, 'j, 1 M. (I)

The sequence {aa l'} may not be bounded. However. as [-- rf.J. x;] is compact,
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the sequence has a limit point ao
o in [- 00, 00]. By taking a subsequence if

necessary, we can assume that {aok } -~ a o
o and in the remainder of the paper

this will be assumed.

LEM\1A I. Let {F(AI" .)} be a bounded sequence. Let a o
o be finite and

nonzero. Let cp not canish except possib(l' at zero. Then {F(AI" .)) ->- F(AO, ').

Proof There are at least n points of X at which cp(aox) does not vanish,
assume without loss of generality they are Xl , ... , X" . Let

. {A..( 0 )1.·I), -= mm 'r ao Xi I • I

There exists K such that for k > K,

hence

= I, ... , n}.

I, ... , n,

i =cc I,.... n, k K.

It follows that {II AI. I'} is bounded and so the limit (al o, ... , anO) of (a/, ... , ani)
is finite. We have cp(ao1,x) ->- cp(aoOx), L(Ak, .) ->- L(AO, '), hence F(AI" .)->

F(AO, -).
It is easily seen that the case where ao

o ~ 0 and cp(O) ft 0 is also taken care
of by Lemma I.

LEMMA 2. Let {F(AI" .)} be a bounded sequence, Let a o
o = 0 and cp(x)==

axlll + 0(1 X Im+l), a eft O. Then {F(Ak, ·n has an accumulation point of the
form xII/L(A, X).

Proof Assume without loss of generality that ao/, > O. There exists K
such that

cp(aokx)! ! a(a/'x)rn 1/2 k K, x E X. (2)

Suppose that {I I(a/)'" AI< ,I} was unbounded, then by taking a subsequence if
necessary we can assume it tends to infinity, and by a standard result in
linear approximation, a variant of which appears in the text of Riee [2, p. 24].

and by (2)

I F(AI,. xl ! a(ao/,x)'" L(AI" x)I-~ 00.
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It foIlows that (aok )'" Ale is bounded and has a limit point A, assume it con
verges to A. Then

F(AI" x) [a(aokx)'" OU aol,x i'" ill] L(AI" x)

aXInL«a(/")'" A!., x) O(i aol, i'" 'I) L(A!., x)

--+ aX"'L(A, x), O.

LEMMA 3. Let 1>(0)= axl/l 0(1 Xl), a 0 and A be finile There
exists a sequence {F(Ak, x)) .--+ xll/L(A, x).

Proof Let F(AI,. x) = 1>(x/k) L(kll'A, xl/a, then

F(A!., x) (x'''lk'") L(k"'A, x) O«xlk)'1/ 1) L(k'"A, x)

x'"L(A, x) O(ljk).

The remaining possibility is that ao
o

with each 1>.
:n. What happens in this case varies

EXPONENTIAL TYPE 1>

As mentioned previously, the case where 1>(x) exp(x) has already been
studied [1]. We develop a theory to be applied to the cases 1>(x) cosh(x)
and 1>(x) = sinh(x).

LEMMA 4. Let 1>(ax)/1>(ay) -. 0 for O' x l' as a-' UJ. LeI XI O.
ao

o ~..~ 00. Then {F(Ak, .)J -+ 0 on all but X,v-II+! , ... , Xv .

Proof We can suppose without loss of generality that AI, 1= 0 for all k.
Define B" = Ak/,i AI,: I'., then Bk I. (b/, ... , b,,") has an accumulation
point (b l , ... , bn), assume convergence occurs. As 'I B 1, L(B, .) is nonzero
on at least one of X,v-n-,] , ..• , X l\" Assume without loss of generality it is
nonzero on X,V . Let i < N-- n --i I and consider

1'1,= F(AI" xJ
, r(A", XN)

1>(aO
/'xi) L(A I" Xi) 1>(aoi'Xi) L(EI,. X,)

1>(at/'xN) . L(AI,. XN) = -1>(aok:x!.,j· L(EI'.XN)·

The ratio of 1>'s tends to zero by hypothesis and the ratio of L's tends to
L(B, x,JIL(B, xv); hence 1'/' -+ O. But' F(AI" xN)1 < lH, so F(AI, . .\,)-> O.

LEMMA 5. Let 1> have no zeros jiJr sufficiently large arguments. Let
1>(ax)/1>(ay)-+ 0 for 0 X Y as a > ,x. LeI XI O. and XI 0
or 1>(0) i- O. Given constanls J'v _" 1 ,,,., y" there cxislS a sequence: F(A I •. ):



APPROXIMATION BY ¢(aox) L a,,1f,Jx) 299

such that F(Ak, xJ ~.~ Yi' i = N
for i ~ N - n.

n + l, ... , Nand F(A", Xi) --->- a

Proof The lemma is obvious in the case all of Y,,--n+1 ,... , YN are zero so
we assume at least one is nonzero.

There exists K such that for k K

N - n-t- l, ... , N.

Assume without loss of generality that K == 1. Let aD" = k. As {1f1 ,... , 1f,J is
a Chebyshev set on X, there exists {a/', ... , a,,"} such that

then

L(A", Xi) = y)¢(kx i )

F(A"', xJ =)"i

i ---. N - 11 + 1,... , N,

i ---. N - 11 :- 1,... , N.

Arguing as in the previous lemma, we get F(A!.', xJ --->- afor i N - n.
Let F+ be the set of functions zero except on {XN-n 1 , .•. , X.~.).

EXAMPLE l. Let Xl a. The closure of

F·= {cosh(aox) L(A, x)} is Fu F+.

Proof By evenness of cosh we can assume that aD ?; a. Lemmas 1 and 4
ensure that any bounded sequence from F has an accumulation point in
F u £I. Lemma 5 ensures that every element of F U F+ is the limit of a
sequence from F.

EXAMPLE 2. Let Xl a. The closure of F = {sinh(aox) L(A, x)} IS

F u F+ u {xL(A, x)}.

Proof By oddness of sinh we can assume that ao ?; a. Lemmas l, 2, 4
ensure that any bounded sequence from F has an accumulation point in
F U F+ u {xL(A, x)}. Lemmas 3 and 5 ensure that every element ofF u Fc- u
{xL(A, x)} is the limit of a sequence from F.

NEGATIVE EXPONENTfAL TYPE ¢

LEMMA 6. Let ¢(ax)!¢(ay) --->- 0 for 0 ~ y < x as a -~ 00. Let Xl a,
Let aDO =- 00, then {F(Ak, .)} --->- 0 on all but Xl"" X n .

The proof is similar to the proof of Lemma 4.

LEMMA 7. Let ¢ haee no zeros for sufficiently large ./inite arguments. Let
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<jJ(ax)N(ay) -.... 0 for 0 )" < x as a+ 00. Let XI 0, and Xl 0
or <jJ(O)ft O. GiL:en constants )"1 ""')"11 there exists a sequence {F(Al., .)} such
that F(A1., x,) = Yi' i I, ... , nand F(A, x,) -+ OroI' i n.

The proof is similar to the proof of Lemma 5. Let F- be the set of functions
zero except on {XI"'" XI/:'

EXAMPLE 3. Let XI O. The closure of

F = {sech (aox)L(A, x)]

is FuF

Proof As sech is even, we can assume ao O. Lemmas I and 6 ensure
that any bounded sequence from F has an accumulation point in F u F-.
Lemma 7 ensures that every element of F u F is the limit of a sequence
from F.

An identical result holds for <jJ(x) exp(-x~).

BOUNDED <jJ

We consider the case where <jJ is continuous at ~ 00 andn.

LEMMA 8. Let XI O. Let <jJ be continuous and nonzero at 00. Let
{F(Ak" .)} be bounded and {Ak} -- AO. Let aoo = TOO then {F(AT., .)} has as an
accumulation point a function of the type {L(A, .): on {Xl , ...• X,y I '"'-' {OJ.

Proof There exists K such that for k K,

Xi O.

By (I)

hence

! L(At., Xi)! < 2M/I <jJ(oo)i I,k K.

It follows that AI,! is bounded and (a/, ... , a/) has a finite limit point
(a1o, ... , a n O). Assume convergence occurs. Then

Xi O.

EXAMPLE 4. Let Xl O. The closure of F {arctan(aox) L(A, x): IS

Fu {xL(A, x)} u {L(A, ·l:.

Proof By oddness of arctan we can assume ao O. By Lemmas I, 2-
and 8, a bounded seqeunce from F has an accumulation point in the given set.
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By Lemma 3 and simple arguments similar to those of Lemma 8 any function
of the form xL(A, x) or L(A, .) is a limit of elements of F.

Exactly the same result holds for ep(x) tanh(x).

ARGUMf?\lTS RESTRICTED TO A CLOSED SET

Some functions ep which we might wish to consider are defined and con
tinuous only on a closed finite interval, causing us to restrict the parameter
ao to a closed finite interval. For example the functions arcsin, arcos, and
arctanh are only defined on [-- I, I]. The case where ao is restricted to a closed
finite interval J containing 0 is handled by Lemmas 1,2, 3. We get the closure
of F {ep(aox)L(A,x): aoE!] being F if ep(O) c!- 0 and FU{XIIIL(A,x)} if
ep(x) axl/I _1- D( I x 'II/ 1).
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